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Abstract. This paper presents the participation of The 
Hong Kong Polytechnic University (PolyU) to the TREC 
2016 Real-Time Summarization track. The two tasks 
related to Scenario A and Scenario B both focuses on 
information real-time processing. During the evaluation 
period, the system monitors the Twitter sample stream with 
respect to a number of “interest profiles”. We submitted 
three runs for both scenarios. We describe the system 
overview and the implementation details in this paper. 
 
1. INTRODUCTION 
The TREC Real-Time Summarization (RTS) track 
explores techniques for constructing real-time update 
summaries from social media streams in response to users' 
information needs. The TREC 2016 Real-Time 
Summarization evaluation took place from August 2, 2016 
00:00:00 UTC to August 11, 2016 23:59:59 UTC. During 
the evaluation period, participating systems monitor the 
Twitter sample stream with respect to a number of “interest 
profiles” that represent users’ information needs. The 
Twitter streaming API offers an approximately 1% sample 
of all tweets (sometimes called the “spritzer”). For this 
year, 203 interest profiles (queries) are given. 

In Scenario A, the content that is identified as relevant by a 
system based on the user’s interest profile will be pushed 
in real-time. At a high level, push notifications should be 
relevant (i.e., on topic), timely (i.e., to provide updates as 
soon after the actual event occurrence as possible), and 
novel (i.e., users should not be pushed multiple 
notifications that are about the same thing). 

In Scenario B, a system can identify a batch of up to 100 
ranked tweets per day per interest profile. At a high level, 
these results should be relevant and novel. Timeliness is 
not important as long as the tweets were all posted on the 
previous day. 

Comparing these two scenarios, Scenario A is a “really” 
real-time task while Scenario B is not, which means we 
may utilize some more sophisticated real-time techniques 
and pay more attention on the efficiency problem during 
implementation. 

To fulfil the requirements mentioned above, we develop a 
system, which consists of pre-processing, relevance 
measurement, redundancy detection and push strategy. We 
also take efficiency, robustness and reliability into 
consideration. 

2. SYSTEM OVERVIEW 
The whole system is based on the “bag-of-words” model. 
As shown in Figure 1, the system consists of two parts: 
Offline Part and Online Part.  

Offline Part: 1. In order to find the synonyms and related 
keywords to better measure the relevance, we expand the 
original query (interest profiles) utilizing the Bing News 
Search API and Reuters Corpus. 2. In order to measure the 
relevance of each coming tweet w.r.t the query, we train a 
Relevance Measurement Model based on the labelled data 
of Microblog Track from past years, 3. Utilizing the 
clustered data from past years, we train a clustering model 
to do redundancy detection and discard the redundant ones. 

Online Part: 1. Use official API to listen the Tweet 
Stream. 2. Pre-process a vast amount of tweets to filter out 
most of the “trash” or irrelevant tweets and transform each 
tweet into a standard and clean format. 3. Extract the 
feature vector from each tweet based on tweet text, URL 
external text and metadata. 4. Estimate Relevance score. 5. 
Check the redundancy. 6. Do a Scenario A Push and 
Scenario B Ranking using certain rules (such as daily 
quota, etc.). 

Since the core tasks in Scenario A and Scenario B are the 
same, i.e., to estimate the tweet relevance to interest 
profiles, the workflows for these two scenarios are merged 
into one single system, except the last module (Push for 
Scenario A and Rank for Scenario B). 

The difference among PolyURunA1, PolyURunA2, 
PolyURunA3 (PolyURunB1, PolyURunB2, PolyURunB3) 
is in the Relevance Measurement Model. There’s a slightly 
difference in Relevance Measurement strategy among 3 
runs. We will describe in more detail in the next section. 

3. COMPONENTS 
Offline Part: 
3.1 Query Expansion  

In order to find the synonyms and related keywords to 
measure the relevance better, inspired by the approaches 
proposed in [3][4], we do the query expansion. For every 
topic, we feed the topic title into Bing News Search API 
and get top 50 search results’ snippets. Then we calculate 
the TF-IDF score based on Reuters Corpus for every term 
in all snippets, and select top-20-score terms as “Expansion 
Terms”. We select top 10 terms from narrative and 
description the same way as above, as “Narr-Desc Terms”. 
All terms except stopwords in title as “Title Terms”.  

3.2 Relevance Model Training 

For 3 different runs, we implement 3 different Relevance 
Measurement strategies. And we use the same relevance 
measurement on both scenarios. 

 

 



	

 
Figure 1: An Overview of the system 

 
 
Run 1: 12-features model (add word2vec-info feature) 

Almost the same as Run 2, except that we add an additional 
feature: word2vec-info. To briefly explain the intuitive idea 
behind this feature, let’s look at an example. For topic 
MB236, "California drought agricultural effects", after 
query expansion, we can get these terms as expanded query: 
“water” “groundwater” “california” “drought” “impact” and 
etc.  

Now, let’s imagine there are two different tweets comming:  

tweet A: “water drought groundwater”  

tweet B: “water California impact” 

Both can be hit 3 times by terms in query. However tweet B 
is more relevant, apparently, because tweet B gives more 
information. In other words, “water” “California” “impact” 
these three words are semantically “distant” from each other 
so they bring more relevant information. On the other hand, 
“water” “groundwater” “drought” are semantically close to 
each other (actually all about water), although they hit 3 
times, they bring less information. 

Under this intuition, we utilize the word2vec model [5] to 
calculate the similarity between words, and then we can 
calculate how much relevant information a tweet brings to 
us. We give the equation: 

𝑖𝑛𝑓𝑜 = 	 (1 − 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑡1, 𝑡34567))
9

1:;

 

Here, 𝑡1  denotes the term which hits the text, 𝑁 denotes 
the number of terms which hit the text, 𝑡34567 denotes the 
most similar term to 𝑡1	which hits the text. The range of 
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑡=, 𝑡>)  function is (0, 1] where 1 means 𝑡= 
and		𝑡> are the same word. The word2vec model is trained 
on GoogleNews Corpus. 

Run 2: 11-features model (without word2vec-info 
feature) 

In a word, the core task is to determine whether a tweet is 
relevant to an interest profile (profile) or not. Intuitively, we 
consider the relevance estimation as a classification 
problem in which we should classify each coming tweet into 
three classes: 2 (highly-relevant), 1 (relevant) or 0 
(not-relevant). 

Inspired by [2][4][2], we utilize a 11-features vector space 
to represent every tweet to a corresponding interest profile 
(query), and we list all of them as following: 

count_ti: the number of times “Title Terms” appear in tweet 
text  

count_te: the number of times “Title Terms” appear in 
external URL text  

count_di: the number of times “Narr-Desc Terms” appear 
in tweet text  

count_de: the number of times “Narr-Desc Terms” appear 
in external URL text  

count_ei: the number of times “Expansion Terms” appear 
in tweet text  

count_ee: the number of times “Expansion Terms” appear 
in external URL text 

is_link: a tweet consists of URL for 1; otherwise for 0 

log_followers_count: the log of the number of followers of 
the author who publishes the tweet.  

log_statuses_count: the log of the number of tweets the 
author publishes.  

world_count: the number of words in this tweet. 



	

hashtag_count: the number of hashtag in this tweet 

We train a SVM model based on labelled Microblog Track 
past data. For each coming tweet, we predict it into 2 
(highly-relevant), 1 (relevant) or 0 (not-relevant) with a 
probability based on well-trained SVM classifier. Since the 
metrics this year lays emphasis on precision rather than 
recall, so only if a tweet is predicted into highly-relevant 
class, then we let the corresponding probability value be its 
Relevant Score and do the next processing; otherwise we 
discard this tweet. 

Run 3: Naive Strategy 

This Run implements a naïve but efficient strategy to 
estimate the relevance between an interest profile and a 
tweet. Intuitively, more “profile terms” appears in a tweet 
more relevant they are. We regard this naïve strategy as a 
reference compared to other two runs with more 
complicated relevance-estimation strategy. So, we just add 
up 6 kinds of number of appearance as following: 

ti: the number of times “Title Terms” appear in tweet text  

te: the number of times “Title Terms” appear in external 
URL text  

di: the number of times “Narr-Desc Terms” appear in tweet 
text 

de: the number of times “Narr-Desc Terms” appear in 
external URL text 

ei: the number of times “Expansion Terms” appear in tweet 
text  

ee: the number of times “Expansion Terms” appear in 
external URL text 

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒	𝑆𝑐𝑜𝑟𝑒 = 𝑡𝑖 + 𝑡𝑒 + 𝑑𝑖 + 𝑑𝑒 + 𝑒𝑖 + 𝑒𝑒 

 

Online Part: 
3.3 Pre-processing 

(a) Language detection: Based on RTS official guideline, 
Non-English tweets should be judged as not relevant. To 
filter out non-English tweets, we read the “lang” field of 
Tweet Stream API attribute and retain only the “en” ones. 
If length (ASCII characters)/length (the whole text) < 0.8, 
we discard this tweet, because that means this tweet 
consists of too many non-ASCII characters. Then, we use 
langdetect [1] package to detect the language and discard 
non-English tweets. The main reason why we use these 
three-level detector to detect non-English tweets is that 
efficiency is crucial in this real-time track. We will discuss 
the efficiency issue in the Section 4. 

(b) Trash discard: Learned from [2], we decide to discard 
“trash tweet” before further processing. If a tweet meets 
one or more these conditions below, we regard it as 
“Trash” tweet and filter out it (bracketed texts are intuitive 
reasons): 

1. the length of text is less than 20; (too few words to 
provide enough information) 

2. the number of hashtag is more than 5; (typical trash 
tweet) 

3. All characters are capital. (typical trash tweet) 

(c) Keyword filtering: In consideration of efficiency, we 
implement a keyword filtering to filter out the vast 
majority of apparently irrelevant tweets. We select 
keywords from every topic’s title based on the IDF score 
on Reuters Corpus and check them manually. If a coming 
tweet does not match any one of these keywords, we 
discard it.  

(d) Crawl URL: crawl external URL webpage text to get 
more text about this tweet for further process. 

(e) Clean original tweet text: remove hashtag, remove 
RT@, remove all URLs. 

3.4 Redundancy Detection 

For each tweet considered as relevant to an interested topic, 
an efficient and naive similarity measurement was adopted 
to detect redundancy.  

We observe that most of redundant tweets are not rephrased 
but simply copies of the original tweet. Hence our method 
assumes that the similarity between two tweets is merely 
determined by occurrences of their common vocabulary.  

The similarity for redundancy detection is defined as the 
union score divided by the intersection score of two tweets. 

Similarity t;, tN  

= 	union_score(t_1, t_2)	/	intersection_score(t_1, t_2) 

The union score of two tweets is defined as the sum of word 
length of the union of two tweets. And the intersection score 
is defined as the sum of word length of the common word of 
the two tweets.  

For example, tweet A is “I have a cat”, tweet B is “My cat 
has claws I do not have”. The union of these tweets is “I 
have a cat my cat has claws I do not have”. “I” length is 1, 
“have” length is 4, and etc.. So the union score is 
1+4+1+3+2+3+3+5+1+2+3+4 = 32. While the intersection 
is “I have cat cat I have”. Hence the intersection score is 
1+4+3+3+1+4 = 16. By our definition, the similarity of 
sample tweets is 16 / 32 = 0.5. 

Using the training data from previous years, we find an 
optimal threshold of 0.6 for redundancy detection. For each 
topic we maintain a list of pushed tweets. Before pushing a 
new tweet, it’s similarity with every tweet which is pushed 
previously in the list corresponding to the topic is computed 
to determine redundancy. Then discard the redundant ones. 

3.5 Push Strategy and Ranking Strategy 

As for Scenario A, it seems like a variant of The Secretary 
Problem. However, a crucial difference is that The Secretary 
Problem aims to get more sum of gain or sum of score, 
regardless of average gain or “precision”. In Scenario A, 
according to metrics of guideline, recall is much less 
important than precision. So, a “cautious” push strategy is 
reasonable. We set thresholds based our observation on the 
Tweet Stream for days before evaluation period. As for 
Run1, we only push the tweets which were classified as 
“highly-relevant” with the probability of 0.7 or higher. For 
Run2, we only push the tweets which were classified as 
“highly-relevant” with the probability of 0.6 or higher. For 
Run3, we only push the tweets with the relevance score of 7 
or higher. 

As for Scenario B, we use the same relevance measurement 
with Scenario A. The only difference is that we collect and 
store all the tweets relevant to each topic during one day. 



	

Then select top ten tweets to push, ordered by the 
probability to be classified as “highly-relevant”. 

4. ABOUT EFFICIENCY 
The efficiency of the whole system is significant in this 
year’s Track, since the listening and pushing part are both 
truly real-time. The Twitter streaming API offers an 
approximately 1% sample of all tweets. According to docs 
[6], Twitter streaming volume is not constant. Throughout 
the course of a 24 hour period, there is a natural ebb and 
flow to the number of Tweets delivered per second. 
According to our test, the coming data rate of Twitter Public 
Stream is about 50 tweets/s ~ 80 tweets/s. So that is to say, if 
the rate of a system’s pipeline to process all coming tweets 
is less than this rate, there might be some problem. 

Our approach to tackle this problem is to set 5 levels of 
filters as mentioned above. The idea is that put the 
compute-fast filtering module front in pipeline, so only a 
few of tweets need to pass compute-intensive or 
time-consuming module, such as external URL webpage 
crawling or Relevance Estimation.  

5. RESULTS 
Team Run ID P (strict) P (lenient) 
COMP2016 run1-11 0.5143 0.5238 
COMP2016 run2-12 0.5465 0.5581 
COMP2016 run3-13 0.5710 0.5828 

Table 1: Performance of submitted runs for Scenario A 
(evaluated by the mobile assessors) 

 
Team Run ID EG-1 nCG-1 GMP(.33) 
COMP2016 run1-11 0.2565 0.2515 -0.0804 
COMP2016 run2-12 0.2559 0.2483 -0.0585 
COMP2016 run3-13 0.2698 0.2909 -0.3262 

Table 2: Performance of submitted runs for Scenario A 
(evaluated by NIST assessors) 

 
Team Run ID nDCG-1 nDCG-0 
COMP2016 PolyURunB1 0.2536 0.0215 
COMP2016 PolyURunB2 0.2523 0.0184 
COMP2016 PolyURunB3 0.2898 0.0684 

Table 3: Performance of submitted runs for Scenario B 
(evaluated by NIST assessors) 

 
For Scenario A, Table 1 and Table 2 report the performance 
of our three runs. As we can see, Run3 outperforms both 
other runs, indicating that a naïve strategy is very useful in 
such kind of task. Note that Run3 gets a worst GMP (.33) in 
Table 2. It means although the naïve strategy gains much, it 
suffers from pushing too many non-relevant tweets. Run2 
performances better under GMP (.33) metric. 

For Scenario B, Table 3 reports the performance of our three 
runs. Apparently, Run3 significantly outperforms other two 
runs. That means a naïve strategy is effective for this 
scenario. 
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